The Dynamic Compressive Response of an Open-Cell Foam Impregnated With a Non-Newtonian Fluid
نویسندگان
چکیده
The response of a reticulated, elastomeric foam filled with colloidal silica under dynamic compression is studied. Under compression beyond local strain rates on the order of 1 s 1, the non-Newtonian, colloidal silica-based fluid undergoes dramatic shear thickening and then proceeds to shear thinning. In this regime, the viscosity of the fluid is large enough that the contribution of the foam and the fluid-structure interaction to the stress response of the fluid-filled foam can be neglected. An analytically tractable lubrication model for the stress-strain response of a non-Newtonian fluid-filled, reticulated, elastomeric foam under dynamic compression between two parallel plates at varying instantaneous strain rates is developed. The resulting lubrication model is applicable when the dimension of the foam in the direction of fluid flow (radial) is much greater than that in the direction of loading (axial). The model is found to describe experimental data well for a range of radius to height ratios 1–4 and instantaneous strain rates of the foam (1 s 1 to 4 102 s 1). The applicability of this model is discussed and the range of instantaneous strain rates of the foam over which it is valid is presented. Furthermore, the utility of this model is discussed with respect to the design and development of energy absorption and blast wave protection equipment. DOI: 10.1115/1.3130825
منابع مشابه
The Dynamic Compressive Response of Open-Cell Foam Impregnated With a Newtonian Fluid
This analysis considers the flow of a highly viscous Newtonian fluid in a reticulated, elastomeric foam undergoing dynamic compression. A comprehensive model for the additional contribution of viscous Newtonian flow to the dynamic response of a reticulated, fluid-filled, elastomeric foam under dynamic loading is developed. For highly viscous Newtonian fluids, the flow in the reticulated foam is...
متن کاملEffect of Fe additive on plastic deformation for crush-boxes with closed-cell metal foams, Part I: Al-composite foam compression response
AbstractIn this paper, we investigate effect of Fe–intermetallic compounds on plastic deformation of closed-cell composite Aluminum Foam as filler of thin-walled tubes. However, deformation of the Aluminum foam-filled thin-walled tubes as crushed-box will be presented in Part (II). Composite foams of AlSi7SiC3 and AlSi7SiC3-(Fe) as closed cell were synthesized by powder metallurgy foaming metho...
متن کاملNumerical Simulation of Laminar Convective Heat Transfer and Pressure Drop of Water Based-Al2O3 Nanofluid as A Non Newtonian Fluid by Computational Fluid Dynamic (CFD)
The convective heat transfer and pressure drop of water based Al2O3 nanofluid in a horizontal tube subject to constant wall temperature condition is investigated by computational fluid dynamic (CFD) method. The Al2O3 nanofluid at five volume concentration of 0.1, 0.5, 1.0, 1.5 and 2 % are applied as a non Newtonian power law and Newtonian fluid with experimentally measured properties of density...
متن کاملThe Effect of Fe Additive on Plastic Deformation for Crush-Boxes with Closed-Cell Metal Foams, Part II: Al-Composite Foam-Filled brass tubes Compression Response
The brass tubes with foam cores of AlSi7SiC3, AlSi7SiC3Fe1 and AlSi7SiC3Fe3 were produced as the crush-boxes with circle and square cross-section. Then axial compressive behavior and energy absorption capability of the foam-filled tubes were investigated during the quasi-static progressive plastic buckling. The uniaxial compressive stress–strain curves of the foam-filled brass tubes exhibited t...
متن کاملAnalytical study of flow field and heat transfer of a non-Newtonian fluid in an axisymmetric channel with a permeable wall
In this study, the momentum and energy equations of laminar flow of a non-Newtonian fluid are solved in an axisymmetric porous channel using the least square and Galerkin methods. The bottom plate is heated by an external hot gas, and a coolant fluid is injected into the channel from the upper plate. The arising nonlinear coupled partial differential equations are reduced to a set of coupled no...
متن کامل